Rough Diamonds in Natural Language Learning

نویسندگان

  • David M. W. Powers
  • Richard Leibbrandt
چکیده

Machine Learning of Natural Language provides a rich environment for exploring supervised and unsupervised learning techniques including soft clustering and rough sets. This keynote presentation will trace the course of our Natural Language Learning as well as some quite intriguing spin-off applications. The focus of the paper will be learning, by both human and computer, reinterpreting our work of the last 30 years [1-12,20-24] in terms of recent developments in Rough Sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rough Set Approach to Domain Knowledge Approximation

Classification systems working on large feature spaces, despite extensive learning, often perform poorly on a group of atypical samples. The problem can be dealt with by incorporating domain knowledge about samples being recognized into the learning process. We present a method that allows to perform this task using a rough approximation framework. We show how human expert’s domain knowledge ex...

متن کامل

Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems

‎Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated‎. ‎In this paper‎, ‎we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties‎, ‎and we prove the global ...

متن کامل

A Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers

o enhance the performances of rough-neural networks (R-NNs) in the system identification‎, ‎on the base of emotional learning‎, ‎a new stable learning algorithm is developed for them‎. ‎This algorithm facilitates the error convergence by increasing the memory depth of R-NNs‎. ‎To this end‎, ‎an emotional signal as a linear combination of identification error and its differences is used to achie...

متن کامل

Synthesis of skeletal diamonds: Implications for microdiamond formation in orogenic belts

Figure 1. Secondary-electron scanning electron microscope images showing morphologies of (A) natural and (B, D, and E) synthetic diamonds. C: Energy-dispersive X-ray spectrum for diamond in B. Natural diamonds are separates from felsic gneiss of Kokchetav massif, Kazakhstan. Synthetic diamonds are crystallized from graphite 1 Mg(OH)2 systems and exhibit irregular skeletal morphology similar to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009